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d6 may be obtained from Gershgorin's theorem. A method of obtaining lower bounds 
for the least positive eigenvalue of a certain type matrix is discussed in [51. 
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An Iterative Method for Computing the 
Generalized Inverse of an 

Arbitrary Matrix 

By Adi Ben-Israel 

Abstract. The iterative process, X+ = Xn(21 - AX.), for computing A-1, 
is generalized to obtain the generalized inverse. 

An iterative method for inverting a matrix, due to Schulz [1], is based on the 
convergence of the sequence of matrices, defined recursively by 

(1) X,+1 = X,(21 - AXn) (n = 0, 1, **) 

to the inverse A` of A, whenever X0 approximates A-'. In this note the process 
(1) is generalized to yield a sequence of matrices converging to A+, the generalized 
inverse of A [2]. 

Let A denote an n X n complex matrix, A* its conjugate transpose, PR(A) the 

perpendicular projection of Em on the range of A, PR(A.) the perpendicular projec- 
tion of En on the range of A*, and A+ the generalized inverse of A. 

THEOREM. The sequence of matrices defined by 

(2) XYn+1 - X.(2PR(4) - AX,) (t = 01, 
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where Xo is an n X m complex matrix satisfying 

(3) XO = A*Bo for some nonsingular mn X in matrix Bo, 

(4) XO = CoA* for some nonsingular n X n matrix Co, 

(5) 11 AXO - PR (A)I1 < 1, 

(6) XOA - PR(A*)|j < 1, 

converges to the generalized inverse A+ of A .' 
Proof. As in [3], the generalized inverse A+ is characterized as the unique 

solution of the matrix equations, 

(7) AX = PR(A) 

(8) XA = PR(A-) 

Thus it suffices to prove that the sequence (2) satisfies: 

(9) lijin fl AXn - PR(A)|| = 0) n-oo 
(10) li111 || XnA - PR(A*)f| = 0. 

noo 
First we verify from (2), (3), (4) that 

(11) Xn = A Bn1 

(12S) Xn = CnA* 
( ,1 

(where Bn, Cn are recursively computed as 

Bn+- Bn(2PR(A) -AA*Bn)) 

Cn+= - ,n(2PR(A.) A*AC,,), 

but are not used in the sequel). 
Now, from (2), 

(13) PR(A) - AXn+1 = (PR(A) - AXn )PR(A) AXn(PR(A) AX,,); 

using (12), it follows that AXn PR(A) = PR(A)AXn 
Therefore 

PR(A) AXn+l = (PR(A) AXn )2 

and 

( 14) jj (A A _ f PR(A) - AXn || (n = 0 1I ), 

which, by (5), proves (9). 
To prove (10) we write 

PR(A*)- Xn+,A = PR(A*) Xn(2PR(A) - AXn)A, 

which is rewritten, by (11), as 

PR(A*) - Xn+,A = PR(A*) - PR(A*)XnA - Xn + (XnA)2 = (PR(A.) - X,,A)2. 

I || [l is a multiplicative matrix norm 
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Thus 

(15) 11PJ(*) - XnA 11 11 PR(AI ) - XnA 112 (n = 0,1, *l.) 

which, by (6), proves (10). 
Remark&. (i) Similarly, the sequence defined by 

(16) Xn+l = (2PR(A*) -XnA)Xn (n = O,1, *..), 

with Xo satisfying (3), (4), (5), (6), converges to A+. 
(ii) When A is nonsingular, both (2) and (16) reduce to the well-known proc- 

ess (1) due to Schulz [1], further studied by Duck in [4]. 
(iii) Conditions (5), (6) can not be weakened as shown by: 

A = 1 0) PR (A) =(Si 

and, taking 

which satisfies (3), (4) but 11 AXo - PR(A) II = 1 under the sum-of-squares norm. 
(iv) The practical significance of the process proposed here is impaired by the 

need for knowledge of PR(A) . In fact, the direct computation of A+ requires little 
more than the computation of PR(A) and of PR(A*) , and not substantially more than 
the computation of one alone. For any matrix A can be expressed in the form 
A = FR* where the columns of F are linearly independent as are those of R. Then, 
as shown by Householder in [5], 

PR(A) = F(F*F)_lF* 

and 

PR(A*) = R(R*R)lR*, 

whereas 
A+ = R(R*R)X1(F*F)-lF*. 

While only one of the projections PR(A), PR(A*) is needed for the computation by 
the method proposed here, both are needed for testing (5) and (6). 

(v) In the case where A is of full rank, the method proposed here is applicable. 
For, if rank A = m, PR(A) = ImXm and (2) reads: 

(17) Xnl+ = Xn(2I - AXn). 

In this case, A+ = A*(AA*) 1 and, indeed, by (11), we verify that Xn A = *Bn 
where Bn converges to (AA*)-1. 

Similarly, if rank A = n, PR(A*) = InXn and (16) becomes 

(18) X,+i= (2I - XnA)Xn. 

Example. Let 

1 0 -1 
A 

0 1 1) 
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and take 

X -1 A*=1 ( 0 0) 

Here, formula (17) is used to obtain: 

xi=~~(A 0)2A ) A 1(r ) 
Xli 0 1 02 (1 0) 1 (1? ll 0 -1)0 

X /2 1) =_ 1 2, 
4 _ s1 1/ 

1/170 5 
X3-2-6t 85 170p, etc., 

\-85 85/ 

converging to: 

1+ 12 1\ A?=_(1 2). 
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A Note on the Maximum Value of Determinants 
over the Complex Field 

By C. H. Yang 

The purpose of this note is to extend a theorem on determinants over the real 
field to the corresponding theorem over the complex field. 

THEOREM. Let D(n) be an nth order determinant with complex numbers as its 
entries. Then 

(1) Max D D)(n) I = Max ID(n) I. 
JaikI?K laik =K 
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