β may be obtained from Gershgorin's theorem. A method of obtaining lower bounds for the least positive eigenvalue of a certain type matrix is discussed in [5].

Bettis Atomic Power Laboratory Westinghouse Electric Corporation West Mifflin, Pennsylvania

G. BIRKHOFF, R. S. VARGA & D. YOUNG, Alternating Direction Implicit Methods, Advances in Computers, Vol. 3, Academic Press, New York, 1962.
 C. DE BOOR & J. R. RICE, "Chebyshev approximation by a II (x - r_i)/(x + s_i) and application to ADI iteration," J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 159-169. MR 28 #466.

3. J. DOUGLAS, "Alternating direction methods for three space variables," Numer. Math., v. 4, 1962, pp. 41-63. MR 24 # B2122.
4. J. DOUGLAS & C. PEARCY, "On convergence of alternating direction procedures in the presence of singular operators," Numer. Math., v. 5, 1963, pp. 175-184. MR 27 #4384.
5. W. H. GUILINGER & R. B. KELLOGG, "Eigenvalue lower bounds," submitted to the Pathia Parking Parisa.

Bettis Technical Review.

6. D. W. PEACEMAN & H. H. RACHFORD, JR., "The numerical solution of parabolic and elliptic differential equations," J. Soc. Indust. Appl. Math., v. 3, 1955, pp. 28-41. MR 17, 196.
7. R. B. SMITH & J. SPANIER, HOT-1: A Two Dimensional Steady-State Heat Conduction Program for the Philco-2000, WAPD-TM-465, Bettis Atomic Power Laboratory, Pittsburgh,

Pa., 1964.

8. J. SPANIER & W. H. GUILINGER, "Matrix conditioning for alternating direction methods," Bettis Technical Review, WAPD-BT-29, 1963, pp. 69-79.
9. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.

MR 28 #1725.

MR 26 % 1/25.
10. E. L. WACHSPRESS, "Optimum alternating-direction-implicit iteration parameters for a model problem," J. Soc. Indust. Appl. Math., v. 10, 1962, pp. 339-350. MR 27 % 921.
11. E. L. WACHSPRESS, "Extended application of alternating direction implicit iteration model problem theory," J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 994-1016.
12. E. L. WACHSPRESS & G. J. HABETLER, "An alternating direction implicit iteration technique," J. Soc. Indust. Appl. Math., v. 8, 1960, pp. 403-424. MR 22 % 5132.

An Iterative Method for Computing the Generalized Inverse of an **Arbitrary Matrix**

By Adi Ben-Israel

Abstract. The iterative process, $X_{n+1} = X_n(2I - AX_n)$, for computing A^{-1} . is generalized to obtain the generalized inverse.

An iterative method for inverting a matrix, due to Schulz [1], is based on the convergence of the sequence of matrices, defined recursively by

(1)
$$X_{n+1} = X_n(2I - AX_n) \qquad (n = 0, 1, \cdots)$$

to the inverse A^{-1} of A, whenever X_0 approximates A^{-1} . In this note the process (1) is generalized to yield a sequence of matrices converging to A^+ , the generalized inverse of A [2].

Let A denote an $m \times n$ complex matrix, A^* its conjugate transpose, $P_{R(A)}$ the perpendicular projection of E^m on the range of A, $P_{R(A^*)}$ the perpendicular projection of E^n on the range of A^* , and A^+ the generalized inverse of A.

THEOREM. The sequence of matrices defined by

(2)
$$X_{n+1} = X_n (2P_{R(A)} - AX_n) \qquad (n = 0, 1, \cdots),$$

Received November 9, 1964.

452

where X_0 is an $n \times m$ complex matrix satisfying

(3)
$$X_0 = A^*B_0$$
 for some nonsingular $m \times m$ matrix B_0 ,

(4)
$$X_0 = C_0 A^*$$
 for some nonsingular $n \times n$ matrix C_0 ,

(5)
$$||AX_0 - P_{R(A)}|| < 1,$$

(6)
$$||X_0A - P_{R(A^*)}|| < 1,$$

converges to the generalized inverse A^+ of $A^{,1}$

Proof. As in [3], the generalized inverse A^+ is characterized as the unique solution of the matrix equations,

$$AX = P_{R(A)},$$

$$(8) XA = P_{R(A^*)}.$$

Thus it suffices to prove that the sequence (2) satisfies:

(9)
$$\lim_{n\to\infty} \|AX_n - P_{R(A)}\| = 0,$$

(10)
$$\lim_{n \to \infty} ||X_n A - P_{R(A^*)}|| = 0.$$

First we verify from (2), (3), (4) that

(11)
$$X_n = A^* B_n$$
 $(n = 0, 1, \cdots)$

(12)
$$X_n = C_n A^*$$

(where B_n , C_n are recursively computed as

$$B_{n+1} = B_n (2P_{R(A)} - AA^*B_n),$$

$$C_{n+1} = C_n (2P_{R(A^*)} - A^*AC_n),$$

but are not used in the sequel).

Now, from (2),

(13)
$$P_{R(A)} - AX_{n+1} = (P_{R(A)} - AX_n)P_{R(A)} - AX_n(P_{R(A)} - AX_n);$$

using (12), it follows that $AX_n P_{R(A)} = P_{R(A)}AX_n$.

Therefore

$$P_{R(A)} - AX_{n+1} = (P_{R(A)} - AX_n)^2$$

and

(14)
$$||P_{R(A)} - AX_{n+1}|| \leq ||P_{R(A)} - AX_{n}||^{2}$$
 $(n = 0, 1, \cdots),$

which, by (5), proves (9).

To prove (10) we write

$$P_{R(A^{\bullet})} - X_{n+1}A = P_{R(A^{\bullet})} - X_n(2P_{R(A)} - AX_n)A,$$

which is rewritten, by (11), as

$$\frac{P_{R(A^{\bullet})} - X_{n+1}A = P_{R(A^{\bullet})} - P_{R(A^{\bullet})}X_nA - X_nA + (X_nA)^2 = (P_{R(A^{\bullet})} - X_nA)^2.$$

¹ || || is a multiplicative matrix norm

Thus

(15)
$$|| P_{R(A^{\bullet})} - X_{n+1}A || \le || P_{R(A^{\bullet})} - X_nA ||^2 \quad (n = 0, 1, \cdots)$$

which, by (6), proves (10).

Remarks. (i) Similarly, the sequence defined by

(16)
$$X_{n+1} = (2P_{R(A^*)} - X_n A) X_n \qquad (n = 0, 1, \cdots),$$

with X_0 satisfying (3), (4), (5), (6), converges to A^+ .

(ii) When A is nonsingular, both (2) and (16) reduce to the well-known process (1) due to Schulz [1], further studied by Dück in [4].

(iii) Conditions (5), (6) can not be weakened as shown by:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad P_{R(A)} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

and, taking

$$X_0 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix},$$

which satisfies (3), (4) but $||AX_0 - P_{R(A)}|| = 1$ under the sum-of-squares norm.

(iv) The practical significance of the process proposed here is impaired by the need for knowledge of $P_{R(A)}$. In fact, the direct computation of A^+ requires little more than the computation of $P_{R(A)}$ and of $P_{R(A^*)}$, and not substantially more than the computation of one alone. For any matrix A can be expressed in the form $A = FR^*$ where the columns of F are linearly independent as are those of R. Then, as shown by Householder in [5],

$$P_{R(A)} = F(F^*F)^{-1}F^*$$

and

$$P_{R(A^*)} = R(R^*R)^{-1}R^*,$$

whereas

$$A^{+} = R(R^{*}R)^{-1}(F^{*}F)^{-1}F^{*}.$$

While only one of the projections $P_{R(A)}$, $P_{R(A^*)}$ is needed for the computation by the method proposed here, both are needed for testing (5) and (6).

(v) In the case where A is of full rank, the method proposed here is applicable. For, if rank A = m, $P_{R(A)} = I_{m \times m}$ and (2) reads:

(17)
$$X_{n+1} = X_n (2I - AX_n).$$

In this case, $A^+ = A^*(AA^*)^{-1}$ and, indeed, by (11), we verify that $X_n = A^*B_n$, where B_n converges to $(AA^*)^{-1}$.

Similarly, if rank A = n, $P_{R(A^{\bullet})} = I_{n \times n}$ and (16) becomes

(18)
$$X_{n+1} = (2I - X_n A) X_n \, .$$

Example. Let

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

454

and take

$$X_0 = \frac{1}{2} A^* = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Here, formula (17) is used to obtain:

$$\begin{split} X_1 &= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \left\{ 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \right\} \\ &= \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ -1 & 1 \end{pmatrix}, \\ X_2 &= \frac{1}{16} \begin{pmatrix} 10 & 5 \\ 5 & 10 \\ -5 & 5 \end{pmatrix}, \\ X_3 &= \frac{1}{256} \begin{pmatrix} 170 & 85 \\ 85 & 170 \\ -85 & 85 \end{pmatrix}, \quad \text{etc.}, \end{split}$$

converging to:

$$A^{+} = \frac{1}{3} \begin{pmatrix} 2 & 1\\ 1 & 2\\ -1 & 1 \end{pmatrix}.$$

Technion, Israel Institute of Technology Haifa, Israel

G. SCHULZ, "Iterative Berechnung der reziproken Matrix," Z. Angew. Math. Mech.
 v. 13, 1933, pp. 57-59.
 R. PENROSE, "A generalized inverse for matrices," Proc. Cambridge Philos. Soc., v. 51,
 1955, pp. 406-413. MR 16, 1082.
 A. BEN-ISRAEL & A. CHARNES, "Contributions to the theory of generalized inverses,"
 J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 667-699.
 W. DÜCK, "Fehlerabschätzungen für das Iterationsverfahren von Schulz zur Bestimmung der Inversen einer Matrix," Z. Angew. Math. Mech., v. 40, 1960, pp. 192-194. MR 22 # 3102.
 A. S. HOUSEHOLDER, Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964

1964.

A Note on the Maximum Value of Determinants over the Complex Field

By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real field to the corresponding theorem over the complex field.

THEOREM. Let D(n) be an nth order determinant with complex numbers as its entries. Then

(1)
$$\operatorname{Max}_{|a_{jk}| \leq K} |D(n)| = \operatorname{Max}_{|a_{jk}| = K} |D(n)|.$$

Received June 5, 1964. Revised December 8, 1964.